Istituto Giordano S.p.A.

Via Gioacchino Rossini, 2 - 47814 Bellaria-Igea Marina (RN) - İtalia
Tel. +39 0541 343030 - Fax +39 0541 345540
istitutogiordano@giordano.it - www.giordano.it
PEC: ist-giordano@legalmail.it
Cod. Fisc/Part. IVA: 00 549 540 409 - Cap. Soc. € 1.500.000 i.v.
RE.A. c/o C.C.I.A.A. (RN) 156766
Registro Imprese di Rimini n. 00 549 540 409

RAPPORTO DI PROVA N. 350665

Luogo e data di emissione: Bellaria-Igea Marina - Italia, 12/04/2018

Committente: SAINT-GOBAIN PPC ITALIA S.p.A. - Via Ettore Romagnoli, 6 - 20146 MILANO (MI) -

Italia

Data della richiesta della prova: 24/11/2017

Numero e data della commessa: 75135, 05/12/2017

Data del ricevimento del campione: 12/03/2018

Data dell'esecuzione della prova: 14/03/2018

Oggetto della prova: misurazione in laboratorio dell'isolamento acustico per via aerea secondo le

norme UNI EN ISO 10140-2:2010 e UNI EN ISO 717-1:2013 su parete

Luogo della prova: Istituto Giordano S.p.A. - Strada Erbosa Uno, 78 - 47043 Gatteo (FC) - Italia

Provenienza del campione: campionato e fornito dal Committente

Identificazione del campione in accettazione: n. 2018/0528

Denominazione del campione*.

Il campione sottoposto a prova è denominato "GYPROC SAD5 163/50 LA34 STD".

(*) secondo le dichiarazioni del Committente.

LAB N° 0021

Comp. AV Revis. ON

Il presente rapporto di prova è composto da n. 9 fogli.

Foglio n. 1 di 9

Descrizione del campione*.

Il campione sottoposto a prova è costituito da una parete divisoria simmetrica in lastre di gesso rivestito non sottoposta a carico, avente le caratteristiche fisiche riportate nella seguente tabella.

Larghezza rilevata	3600 mm
Altezza rilevata	3000 mm
Spessore rilevato	163 mm
Superficie acustica utile	10,80 m²
Massa unitaria (determinazione analitica)	53,5 kg/m²

Il campione, in particolare, descrivendo dalla superficie esposta al rumore, è composto da:

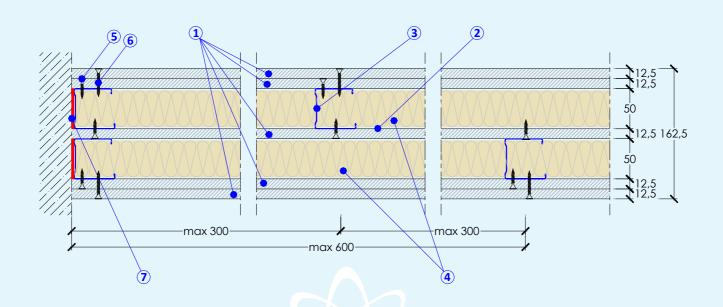
- lastre in gesso rivestito, denominate "GYPROC WALLBOARD 13" (di tipo A secondo la norma UNI EN 520, in classe di reazione al fuoco A2-s1,d0), dimensioni 1200 mm × 3000 mm, spessore 12,5 mm, peso 9,2 kg/m², composte da nucleo in gesso, con rivestimento esterno in carta. Tali lastre sono posate in doppio strato con giunti orizzontali e verticali sfalsati e fissate alla struttura metallica mediante viti in acciaio fosfatate autoperforanti, denominate "GYPROC PUNTA CHIODO 25" e "GYPROC PUNTA CHIODO 35", del diametro di 3,5 mm, lunghezza rispettivamente 25 mm (per il primo strato) e 35 mm (per il secondo strato);
- guide metalliche orizzontali realizzate con profilati in lamiera di acciaio zincata a forma di U, denominate "GYPROC GYPROFILE GUIDA", tipo UNI (conformi a norma EN 14195), dimensioni 35 mm × 50 mm × 35 mm, spessore 0,6 mm, poste a pavimento e a soffitto, e ancorate mediante tasselli metallici ad espansione, diametro 8 mm, ad interasse di 500 mm;
- orditura metallica verticale realizzata con montanti in lamiera di acciaio zincata a forma di C, denominati
 "GYPROC GYPROFILE MONTANTI", tipo UNI (conformi a norma EN 14195), dimensioni 43 mm × 50 mm ×
 40 mm, spessore 0,6 mm, posti ad interasse di 600 mm, inseriti alle estremità nelle guide orizzontali sopra descritte;
- pannello in lana minerale, idrorepellente, senza rivestimento, denominato "ISOVER ARENA34", prodotto in Italia con un legante a base di componenti organici e vegetali, dello spessore di 45 mm, densità 22 kg/m³, in classe di reazione al fuoco A1;
- lastre in gesso rivestito, denominate "GYPROC WALLBOARD 13" (di tipo A secondo la norma UNI EN 520, in classe di reazione al fuoco A2-s1,d0), dimensioni 1200 mm × 3000 mm, spessore 12,5 mm, peso 9,2 kg/m², composte da nucleo in gesso, con rivestimento esterno in carta. Tali lastre sono posate in singolo strato con giunti orizzontali e verticali sfalsati e fissate alla struttura metallica mediante viti in acciaio

^(*) secondo le dichiarazioni del Committente, ad eccezione delle caratteristiche espressamente indicate come rilevate.

fosfatate autoperforanti, denominate "GYPROC PUNTA CHIODO 25", lunghezza 25 mm;

- guide metalliche orizzontali realizzate con profilati in lamiera di acciaio zincata a forma di U, denominate
 "GYPROC GYPROFILE GUIDA", tipo UNI (conformi a norma EN 14195), dimensioni 35 mm × 50 mm ×
 35 mm, spessore 0,6 mm, poste a pavimento e a soffitto, e ancorate mediante tasselli metallici ad espansione, diametro 8 mm, ad interasse di 500 mm;
- orditura metallica verticale realizzata con montanti in lamiera di acciaio zincata a forma di C, denominati
 "GYPROC GYPROFILE MONTANTI", tipo UNI (conformi a norma EN 14195), dimensioni 43 mm × 50 mm ×
 40 mm, spessore 0,6 mm, posti ad interasse di 600 mm, inseriti alle estremità nelle guide orizzontali sopra descritte;
- pannello in lana minerale, idrorepellente, senza rivestimento, denominato "ISOVER ARENA34", prodotto in Italia con un legante a base di componenti organici e vegetali, spessore 45 mm, densità 22 kg/m³, in classe di reazione al fuoco A1;
- lastre in gesso rivestito, denominate "GYPROC WALLBOARD 13" (di tipo A secondo la norma UNI EN 520, in classe di reazione al fuoco A2-s1,d0), dimensioni 1200 mm × 3000 mm, spessore 12,5 mm, peso 9,2 kg/m², composte da nucleo in gesso, con rivestimento esterno in carta. Tali lastre sono posate in doppio strato con giunti orizzontali e verticali sfalsati e fissate alla struttura metallica mediante viti in acciaio fosfatate autoperforanti, denominate "GYPROC PUNTA CHIODO 25" e "GYPROC PUNTA CHIODO 35", diametro 3,5 mm, lunghezza rispettivamente 25 mm (per il primo strato) e 35 mm (per il secondo strato).

I giunti tra le lastre sono stati stuccati con "stucco a base gesso GYPROC", previa interposizione di nastro di rinforzo.


Il campione è prodotto dal Committente ed è stato montato nell'apertura di prova a cura del Committente stesso.

DISEGNI SCHEMATICI DEL CAMPIONE (FORNITI DAL COMMITTENTE)

LEGENDA

Simbolo	Descrizione			
1	Lastre in gesso rivestito "GYPROC WALLBOARD 13"			
2	Struttura metallica orizzontale "GYPROC GYPROFILE GUIDA"			
3	Struttura metallica verticale "GYPROC GYPROFILE MONTANTE"			
4	Lana minerale "ISOVER Arena34"			
5	Viti in acciaio fosfatate autoperforanti "GYPROC PUNTA CHIODO 25"			
6	Viti in acciaio fosfatate autoperforanti "GYPROC PUNTA CHIODO 35"			
7	Nastro biadesivo			

Riferimenti normativi.

La prova è stata eseguita secondo le prescrizioni delle seguenti norme:

- UNI EN ISO 10140-2:2010 del 21/10/2010 "Acustica Misurazione in laboratorio dell'isolamento acustico di edifici e di elementi di edificio - Parte 2: Misurazione dell'isolamento acustico per via aerea";
- UNI EN ISO 717-1:2013 del 04/04/2013 "Acustica Valutazione dell'isolamento acustico in edifici e di elementi di edificio Parte 1: Isolamento acustico per via aerea".

Apparecchiatura di prova.

Per l'esecuzione della prova è stata utilizzata la seguente apparecchiatura:

- amplificatore di potenza 2000 W modello "EP2000" della ditta Behringer;
- equalizzatore digitale a terzi d'ottava modello "DEQ2496" della ditta Behringer;
- diffusore acustico dodecaedrico mobile con percorso rettilineo, lunghezza 1,6 m ed inclinazione 15°, posizionato nella camera emittente;
- diffusore acustico dodecaedrico fisso posizionato nella camera ricevente;
- n. 2 aste microfoniche rotanti con percorso circolare, raggio 1 m ed inclinazione 30°;
- n. 2 microfoni ø ½" modello "4192" della ditta Brüel & Kjær;
- n. 2 preamplificatori microfonici "2669" della ditta Brüel & Kjær;
- analizzatore a n. 4 canali in tempo reale modello "Soundbook" della ditta Sinus;
- calibratore per la calibrazione dei microfoni modello "CAL200" della ditta Larson Davis;
- bilancia a piattaforma elettronica modello "VB 150 K 50LM" della ditta Kern;
- fettuccia metrica modello "Tri-Matic 5m/19mm" della ditta Sola;
- misuratore di distanza laser modello "DLE 50 Professional" della ditta Bosch;
- n. 2 termoigrometri modello "HD206-1" della ditta Delta Ohm;
- barometro modello "UZ001" della ditta Brüel & Kjær;
- accessori di completamento.

Modalità della prova.

La prova è stata eseguita utilizzando la procedura interna di dettaglio PP017 nella revisione vigente alla data della prova.

L'ambiente di prova è costituito da due camere, una delle quali, definita "camera emittente", contiene la sorgente di rumore, mentre l'altra, definita "camera ricevente", è caratterizzata acusticamente mediante l'area di assorbimento acustico equivalente.

Il campione, dopo essere stato condizionato per almeno 24 h all'interno degli ambienti di misura, è stato installato nell'apertura di prova posta tra le due camere secondo le modalità riportate nel disegno precedente. Nell'intervallo di bande di ¼ d'ottava compreso tra 100 Hz e 5000 Hz, il potere fonoisolante "R", pari a n. 10 volte il logaritmo decimale del rapporto fra la potenza sonora incidente e la potenza sonora trasmessa attraverso il campione, è stato calcolato utilizzando la formula seguente:

$$R = L_1 - L_2 + 10 \cdot log \frac{S}{A}$$

dove: R = potere fonoisolante, espresso in dB;

L₁ = livello medio di pressione sonora nella camera emittente, espresso in dB, generato con rumore rosa;

L₂ = livello medio di pressione sonora nella camera ricevente, espresso in dB, corretto del rumore di fondo e calcolato utilizzando la formula seguente:

$$L_2 = 10 \cdot \log[10^{\frac{L_{2b}}{10}} - 10^{\frac{L_b}{10}}]$$

dove: L_{2b} = livello medio di pressione sonora combinato del segnale e del rumore di fondo, espresso in dB;

L_b = livello medio del rumore di fondo, espresso in dB;

se la differenza dei livelli $[L_{2b} - L_b]$ è inferiore a 6 dB, viene applicata una correzione massima pari a 1,3 dB ed il corrispondente valore del potere fonoisolante "R" è da considerarsi come un valore limite della misurazione;

S = superficie utile di misura del campione in prova, espressa in m²;

A = area di assorbimento acustico equivalente della camera ricevente, espressa in m², calcolata a sua volta utilizzando la formula seguente:

$$A = \frac{0.16 \cdot V}{T}$$

dove: V = volume della camera ricevente, espresso in m³;

T = tempo di riverberazione, espresso in s.

L'indice di valutazione "R_w" del potere fonoisolante "R" è pari al valore in dB della curva di riferimento a 500 Hz secondo il procedimento della norma UNI EN ISO 717-1. Sono stati inoltre calcolati n. 2 termini correttivi in dB che tengono conto delle caratteristiche di particolari spettri sonori in sorgente e precisamente:

- termine correttivo "C" da sommare all'indice di valutazione "R_w" con spettro in sorgente relativo a rumore rosa (pink) ponderato A;
- termine correttivo " C_{tr} " da sommare all'indice di valutazione " R_{w} " con spettro in sorgente relativo a rumore da traffico (traffic) ponderato A.

La prova è stata eseguita, appena terminato l'allestimento del campione.

Incertezza di misura.

L'incertezza di misura è stata determinata in accordo con la guida JCGM 100:2008 del settembre 2008 "Evaluation of measurement data - Guide to the expression of uncertainty in measurement", individuando per ciascuna frequenza il numero di gradi di libertà effettivi "v_{eff}" e l'incertezza estesa "U" del valore del potere fonoisolante "R", stimata con fattore di copertura "k" relativo ad un livello di fiducia pari al 95 %.

L'incertezza di misura dell'indice di valutazione " $U(R_w)$ " è stata stimata con fattore di copertura k=2 relativo ad un livello di fiducia pari al 95 %, utilizzando la procedura di calcolo riportata nell'allegato B della norma UNI EN ISO 12999-1:2014 del 26/06/2014 "Acustica - Determinazione e applicazione dell'incertezza di misurazione nell'acustica in edilizia - Parte 1: Isolamento acustico" in cui si presuppone una piena correlazione positiva tra i valori in bande di $\frac{1}{2}$ d'ottava di isolamento acustico.

Condizioni ambientali al momento della prova.

	Camera emittente	Camera ricevente	
Pressione atmosferica	(101000 ± 50) Pa	(101000 ± 50) Pa	
Temperatura media	(16 ± 1) °C	(16 ± 1) °C	
Umidità relativa media	(57 ± 5) %	(58 ± 5) %	

Risultati della prova.

Frequenza	R	R _{rif}	V _{eff}	k	U
[Hz]	[dB]	[dB]			[dB]
100	33,0	44,0	5	2,57	2,7
125	33,9	47,0	8	2,31	2,0
160	44,7	50,0	7	2,36	1,1
200	55,3	53,0	9	2,26	0,9
250	59,5	56,0	13	2,00	0,8
315	62,2	59,0	10	2,23	0,8
400	63,2	62,0	28	2,00	0,6
500	65,3	63,0	20	2,00	0,5
630	65,7	64,0	15	2,00	0,4
800	68,5	65,0	16	2,00	0,5
1000	70,8	66,0	17	2,00	0,4
1250	73,6	67,0	25	2,00	0,4
1600	77,2 *	67,0	19	2,00	0,4
2000	78,5 *	67,0	17	2,00	0,4
2500	75,9 *	67,0	16	2,00	0,4
3150	75,9 *	67,0	14	2,00	0,4
4000	76,8 *	//	16	2,00	0,4
5000	75,8 *	//	15	2,00	0,4

^(*) valore limite della misurazione per influenza del rumore di fondo.

Superficie utile di misura del campione:

10,80 m²

Volume della camera emittente:

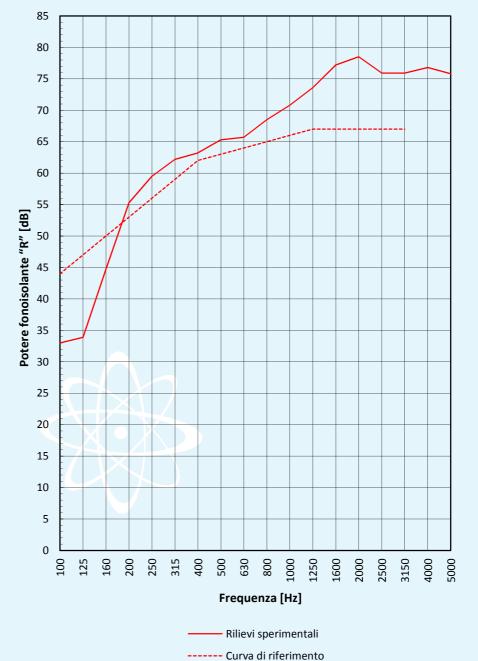
109,1 m³

Volume della camera ricevente:

96,2 m³

Esito della prova*:

Indice di valutazione a 500 Hz nella banda di frequenze comprese fra 100 Hz e 3150 Hz:


 $R_{w} = 63 dB^{**}$

Termini di correzione:

C = -6 dB $C_{tr} = -13 dB$

- (*) valutazione basata su risultati di misurazioni di laboratorio ottenuti mediante un metodo tecnico.
- (**) indice di valutazione del potere fonoisolante elaborato procedendo a passi di 0,1 dB e incertezza di misura dell'indice di valutazione U(R_w):

 $R_w = (63.8 \pm 1.6) \text{ dB}$ $R_w + C = (57.1 \pm 1.7) \text{ dB}$ $R_w + C_{tr} = (50.1 \pm 1.9) \text{ dB}$

Il Responsabile Tecnico di Prova (Geom. Omar Nanni)

Il Responsabile del Laboratorio di Acustica e Vibrazioni (Dott. Ing. Roberto Baruffa) L'Amministratore Delegato

Roberto Baruffa